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Introduction: We have continued to develop the 
Chemistry, Organics, and Dating EXperiment 
(CODEX) instrument, improving the TRL of the in-
strument subsystems, and extended previously pub-
lished Rb-Sr dating [1, 2] to Pb-Pb dating. Our instru-
ment uses laser-ablation (LA) to remove atoms at each 
of hundreds of analytical spots on a ~1 cm2 sample, 
and resonance ionization (RI) to selectively ionize 
atoms of Pb, Rb, and Sr, thereby mitigating isobaric 
interferences, followed by mass spectrometry (MS) to 
determine the abundance of individual isotopes [1]. 
From our measured isotopic abundances, we are able 
to construct Pb-Pb and 87Rb-87Sr isochron for the spec-
imen. In addition, we have previously demonstrated 
that we can measure elemental and organic abundance, 
using simpler CODEX modes of laser ablation and 
two-step laser mass spectrometry, respectively [e.g., 3]. 

Importance: Understanding the relative timing of 
geologic events using crater counting is the keystone to 
unraveling the history recorded on the surfaces of 
rocky bodies. Crater counts, in conjunction with ra-
diometrically-dated Apollo and Luna samples, have 

been used to estimate the absolute ages of events on 
the Moon [4]. The resulting cratering flux has been 
extrapolated to Mars [5], Mercury [6, 7], Venus [8], 
Vesta [9-11], and used in models of early solar system 
dynamics [12].  

However, recent analysis [13] indicates three major 
complications to the crater chronology picture: a) 
crater-counted terrains may not be the sources of dated 
samples, b) there is a need to extrapolate crater count 
relationships to very young and old terrains, and c) 
there is a two-billion year gap of samples with well-
known provenance suitable for crater counting from 1 
to 3 Ga (Fig. 1).  

These problems result in billion-year uncertainties 
for the history of the Moon [13] and solar system. For 
example, the era of bombardment of the inner solar 
system, as recorded by lunar impacts, may have effec-
tively ended ~3.7 Ga ago or at some younger time. 
Because life on Earth is thought to have arisen between 
~3.7 and ~3.0 Ga ago, the model improvement could 
reveal new insights about the habitability of the early 
Earth. Similarly, the era of liquid water on the Martian 

Fig. 1: Illustration of how poorly constrained lunar chronology functions, with up to 1 Ga of uncertainty, influence 
interpretation of key geologic events for the Moon, Mars, and even Earth.
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surface, which is intimately related to possible life on 
Mars, as well as the eras of voluminous volcanism on 
the Moon and Mars, might have ended ~3 Ga ago or 
extended to as recently as ~1.7 Ga ago. 

Thus, obtaining new dates from the surfaces of 
Mars or the Moon are crucial to revealing which of 
these models of solar system history is correct. To un-
derstand the range of terranes and history on another 
planet will require obtaining samples with a wide geo-
graphic distribution. This likely means multiple mis-
sions, which due to cost constraints, will need to be 
comprised of both sample return and in-situ measure-
ments. Fortunately, CODEX provides two chronometry 
systems, and maps of elemental abundance, enabling 
us to place measurements in mineralogical and petro-
logical context. Previously published results show that 
we can readily obtain precision and accuracy better 
than 200 Ma for the Martian meteorite Zagami [2], and 
the lunar analog Duluth Gabbro [1]. Our new mea-
surements described below illustrate how CODEX can 
measure a second independent geochronometer.  

New Pb measurements: By adding two lasers to 
the CODEX system, we can use the LARIMS ap-
proach to obtain ~10 ppb sensitivity in isobar-free 
measurements of 204Pb, 206Pb, 207Pb, and 208Pb. We 
used wavelengths of 283.3 nm and 600.2 nm for reso-
nance excitation, followed by IR photoionization. 
These in turn can be used to assess the isochron age of 
samples.  We tested our approach on the Kuehl Lake 
91500 Zircon and MIL 05035. The results were in ex-
cellent agreement with the known ages, being within 
80 Ma of previous measurements (Fig. 2-3).  

Progress on instrument development: Under 
MatISSE 2014 funding, we are currently miniaturizing 
the Sr and ablation laser subsystem using an all-fiber 
approach, and are actively working to reduce the over-
all instrument.  In addition, we are in preliminary de-
sign and development for the mass spectrometer and 
sample handling.  
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Fig. 3: LARIMS isochron for MIL-05035. Because of the 
low concentration of Pb in this sample (0.405 ppm) only 
19 points out of 204 that we analyzed had adequate 
signal-to-noise to be used in the isochron. The actual age 
is between 3.8 and 3.9 billion years.

Fig. 2: LARIMS isochron of Zircon Sample. Actual age is 
1.067 Ga.
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